
BITBUS APPLICATION PROGRAMMERS INTERFACE (BAPI)

BITBUS

APPLICATION PROGRAMMERS INTERFACE

(BAPI)

A BEUG Recommendation

Page 1/28

Description: BITBUS Application Programmers Interface (BAPI)

Date: May 15, 1998

Last Change: July 21th, 1998, common format for all recommendations, PDF conversion. VG

October 15th, 1998, font changed to new std. BEUG font, richer comments

January 18th, 1999, small changes in GBS command description

Status: Accepted by BEUG on May 15, 1998

Authors: Mario Casali, System Electronics S.P.A.
Bassel Safadi, System Electronics S.P.A.
Matteo Mondada, CIMSI
Beggi Oskarsson, Broderson Control Systems A/S
Volker Goller, mocom software GmbH & Co KG

Copyright: All rights reserved. This document is intellectual property of
BEUG - The BITBUS European User's Group
This document can be used for documentation purposes by all BITBUS users and
manufactures if their implementation and products meets this specification.

Contact: e-mail: wg1@bitbus.org

Page 2/28

BITBUS APPLICATION PROGRAMMERS INTERFACE (BAPI)

Contents

1. What is it all about?...4

2. The BAPI reference..5

2.1. BAPI naming conventions...5

2.2. BAPI constant values..5

2.2.1. The commands...6
2.2.2. Special parameters and constants...8
2.2.3. Error codes...9
2.2.4. BAPI error codes and miscellaneous constants...11

2.3. BAPI Datatypes...12

2.3.1. Data packing...12
2.3.2. Base types..13
2.3.3. BITBUS message..14
2.3.4. GBS-TASK time & date format...15
2.3.5. Implementation dependent types..15

2.4. BAPI Function reference..16

2.4.1. BAPI DLL/LIB naming conventions...16
I. Function: BitbusOpenMaster...17
II. Function: BitbusOpenSlave..18
III. Function: BitbusClose..19
IV. Function: BitbusSendMsg..20
V. Function: BitbusWaitMsg..21
VI. Function: BitbusReset...22
VII. Function: BitbusGetMsgLength..23
VIII. Function: BitbusGetMsgCnt...24
IX. Function: BitbusGetAppNames...25

3. BAPI implementation notes...26

3.1. BAPI in a multi-tasking environment..26

Page 3/28

3.2. Sample OS depending macros for WATCOM-C..26

Page 4/28

BITBUS APPLICATION PROGRAMMERS INTERFACE (BAPI)

1. What is it all about?

BAPI is a common BITBUS API (application programmers interface) definition. Suppliers
of BITBUS „plug-in“ boards like ISA, PCI or VME Bus boards should support an BAPI
library (DLL, LIB) on top of their driver architecture. On top of BAPI higher layer
interfaces and tools can be provided in an vendor independent way. Users can replace
boards that run out of production by newer boards without redesigning their software -
if it uses BAPI only!

Figure 1 shows the BAPI architecture. Please note that BAPI provides a multitasking
interface allowing several applications to use BITBUS at a time! Think of diagnostic tools
running concurrently with an application!

Page 5/28

2. The BAPI reference

2.1. BAPI naming conventions

The BAPI proposal was designed using the C-language. However, naming conventions
were designed as flexible as possible to fit into other languages (as Pascal or Java), too.

All public functions start with »Bitbus«. The underline character is not used in function
names.

A designer may add private functions to BAPI, however he should not add additional
functions starting with »Bitbus«, because the BEUG reserved this prefix for future BAPI
extensions. However, if a designer needs additional functions including the »Bitbus«
prefix for compatibility needs, he is allowed to do so if he adds a warning text to both
the header files and the documentation that these functions are no longer supported
and only available for compatibility reasons.

2.2. BAPI constant values

Almost all constant values are present in two version: the RAC and the GBS version.

RAC is »remote access command« and the old style INTEL definition of the base
command set every BITBUS controller supports by TASK 0.

GBS is »generic bus services« and the newer IEEE1118 definition of RAC. There are
more GBS than RAC commands, RAC is a subset of GBS. RAC definitions are provided
for compatibility only and should not be used in newer designs.

Page 6/28

BITBUS APPLICATION PROGRAMMERS INTERFACE (BAPI)

2.2.1. The commands

Command
code

GBS / BAPI name Comment

0x000 GBS_RESET

(RAC_RESET)

Resets a node. Special care has to be taken because not every
implementation will perform a hardware reset!

0x001 GBS_CREATE

(RAC_CREATE)

Create a task. The message carries the tasks ITD (initial task descriptor)
address (2 byte, msb first). The address can be extendet using the
GBS_EXTEND_ADDR command.

0x002 GBS_DELETE

(RAC_DELETE)

Deletes a running task. The only parameter is the task number
returned by GBS_CREATE (or retrieved by GBS_GET_FID)

0x003 GBS_GETFID

(RAC_GETFID)

Retrieves a list of running tasks from a BITBUS node. The message is
expected to be an array with the task numbers as an index. The array
is filled by the node with the tasks function id codes (FID, a byte).
Valid FID codes are:

0 = NOFID 1 = GBSTASK 0x80..0xfe user FID's and 0xff = NOFID

0x004 GBS_PROTECT

(RAC_PROTECT)

This command allows to lock some commands temporarily. The
locking code is a single byte: 0 = UNLOCK, 1 = LOCK, 2 = RDONLY

0x005 GBS_READ_IO

(RAC_READ_IO)

Read specified IO ports. The addresses and the data are expected to
be bytes.

The GBS_EXTEND_ADDR command can be used to enlarge the
addressing range to 24 bits (0..0xffffff). However, all byte addresses
within a message are extended with the same base address so that all
ports accessed by a single message must be within the same 256-byte
page.

0x006 GBS_WRITE_IO

(RAC_WRITE_IO)

Write a value to the specified IO ports. The addresses and the data
are expected to be bytes. The address range can be extended, see
GBS_READ_IO for details.

0x007 GBS_UPDATE_IO

(RAC_UPDATE_IO)

Write a value to the specified IO ports and read them back
immediately. The addresses and the data are expected to be bytes.
The address range can be extended, see GBS_READ_IO for details.

0x008 GBS_UPLOAD_DATA

(RAC_UPLOAD_DATA)

Read a chunk of memory from a given 16-bit address. The address
can be extended to 32-bit using the GBS_EXTEND_ADDR command.

0x009 GBS_DOWNLOAD_DATA

(RAC_DOWNLOAD_DATA)

Write a chunk of memory to a given 16-bit address. The address can
be extended to 32-bit using the GBS_EXTEND_ADDR command.

0x00A GBS_OR_IO

(RAC_OR_IO)

The data in the message is bitwise ored with the current port value
and write the result back to the port immediately. The addresses and
the data are expected to be bytes. The address range can be
extended, see GBS_READ_IO for details.

Page 7/28

Command
code

GBS / BAPI name Comment

0x00B GBS_AND_IO

(RAC_AND_IO)

The data in the message is bitwise anded with the current port value
and write the result back to the port immediately. The addresses and
the data are expected to be bytes. The address range can be
extended, see GBS_READ_IO for details.

0x00C GBS_XOR_IO

(RAC_XOR_IO)

The data in the message is bitwise xored with the current port value
and write the result back to the port immediately. The addresses and
the data are expected to be bytes. The address range can be
extended, see GBS_READ_IO for details.

0x00D GBS_WRITE_SCRATCHPAD

(RAC_WRITE_SCRATCHPAD)

Write values to the specified address in scratch pad ram. The
addresses and the data are expected to be bytes. This command
was/is used to access i8044/i80152 internal RAM for an example. The
use is implementation depending.

The address range can be extended, see GBS_READ_IO for details.

0x00E GBS_READ_SCRATCHPAD

(RAC_READ_SCRATCHPAD)

Read values from the specified address in scratch pad ram. The
addresses and the data are expected to be bytes. This command
was/is used to access i8044/i80152 internal RAM for an example. The
use is implementation depending.

The address range can be extended, see GBS_READ_IO for details.

0x00F GBS_GET_NODE_INFO

(RAC_GET_NODE_INFO)

This commands replies some node information:

6 byte of node id (“i8044“), all ASCII.

2 bytes version of node firmware (“21“), all ASCII

1 byte (byte #9) supported message length

Additional vendor and/or implementation depending information can
be added behind byte #9.

0x010 GBS_OFFLINE

(RAC_OFFLINE)

Reset the communication between a master and a specific node.
Used to fix a bug within older i8044 processors ...

0x011 GBS_UPLOAD_CODE

(RAC_UPLOAD_CODE)

Read a chunk of memory from a given 16-bit address. If the
processor supports different address spaces for code and data
memory, the commands GBS_UPLOAD_DATA (0x00´8) and
GBS_UPLOAD_CODE can be used to access both spaces at will.

The address can be extended to 32-bit using the
GBS_EXTEND_ADDR command.

0x012 GBS_DOWNLOAD_CODE

(RAC_DOWNLOAD_CODE)

Write a chunk of memory to a given 16-bit address. If the processor
supports different address spaces for code and data memory, the
command GBS_DOWNLAOD_DATA (0x00́9) and
GBS_DOWNLOAD_CODE can be used to access both spaces at will.
If the code memory is an EEPROM or FLASH memory, a suitable
programming algorithm is used.

The address can be extended to 32-bit using the
GBS_EXTEND_ADDR command.

Page 8/28

BITBUS APPLICATION PROGRAMMERS INTERFACE (BAPI)

Command
code

GBS / BAPI name Comment

0x013 GBS_READ_REGISTER This command is new with IEEE1118. Allows to read a processors
special function registers (SFR). This command is implementation
depended. Use is not recommended, because a wrong programming
of an SFR may have dramatic drawbacks.

0x014 GBS_WRITE_REGISTER This command is new with IEEE1118. Allows to read a processors
special function registers (SFR). This command is implementation
depended. Use is not recommended, because a wrong programming
of an SFR may have dramatic drawbacks.

0x015 GBS_GET_TIME Read the nodes clock information.

0x016 GBS_SET_TIME Sets the nodes clock information to a given value.

0x017 GBS_SUSPEND_TASK Stop execution of an task. The task number must be provided.

0x018 GBS_RESUME_TASK Restarts a previously suspended task. The task number must be
provided.

0x019 GBS_DEFINE_SERVICE Install a user supplied command (0xc0..0xff).

0x01A GBS_GET_TASK_ID Get a tasks id (task number). The function ID is given as a parameter.

0x0BF GBS_EXTEND_ADDR This command can be used to extend the addressing range of an
command. Memory up- and downloads can be boosted up to 32-bit
and IO commands up to 24-bit. The GBS_EXTEND_ADDR modifies a
given command - so two commands (GBS_EXTEND_ADDR + the
original command) are included within a single message. There is no
loss in performance using this command!

The extended address can be a page address on 80x51 systems
supporting paging, a 16-Bit segment address on a 80x86 system or a
linear address (68000, 386, 80251, ...)

0x0C0 GBS_USER_SERVICE_START Defines the first user defined command

0x0FF GBS_USER_SERVICE_END Defines the last user defined command

2.2.2. Special parameters and constants

Parameter
code

Name RAC GBS Comment

0x000 GBS_UNPROTECTED

(RAC_UNPROTECTED)

9 9 Enable GBS/RAC access

0x001 GBS_RW_PROTECTED

(RAC_RW_PROTECTED)

9 9 Disable GBS/RAC access

0x002 GBS_WRITE_PROTECTED

(RAC_WRITE_PROTECTED)

- 9 Set GBS/RAC access to read-only.

Page 9/28

Mask value Mask name Related Bitbus
header byte

Comment

0x080 MT_FLAG flags Message type. If set, the message is a response (a message
from slave to master). This field should be handled by BAPI
to prevent errors.

0x040 SE_FLAG flags Source extension or 5th bit of source task number. Source
extension is used to route a BITBUS command message to a
host connected to a BITBUS master node (e.g. PC plug-in
board). This field should be handled by BAPI to prevent
errors.

0x020 DE_FLAG flags Destination extension or 5th bit of destination task number.
Destination extension is used to route a BITBUS response
message to a host connected to a BITBUS slave node

0x010 TR_FLAG flags Direction bit for host interface transfers.

0x0F0 SRC_TSK src_dest Mask the source task number from the src_dest field. The
result must be shifted 4 times right to get a valid task
number. This field should be handled by BAPI to prevent
errors.

0x00F DST_TSK src_dest Mask the destination task number from the src_dest field.

2.2.3. Error codes

Error code Name Related GBS/RAC
commands

Comment

0x000 GBS_OK, GBS_ERR_OK All except GBS_CREATE All works fine!

0x01..0x1f Task number, response GBS_CREATE The GBS_CREATE returns the task
number of the new created task in
com_res.

0x20..0x7f User defined errors - Reserved for user defined commands

0x080 GBS_ERR_NO_DEST_TASK ALL incl. non-GBS tasks This error can have two sources:

If a message is send to a task that does
not exist, the link layer will answer the
message signalling this error.

If a GBS/RAC command uses an task
number as an parameter (e.g.
GBS_DELETE), this error is returned if the
requested task does not exist.

0x081 GBS_ERR_TASK_OVFL GBS_CREATE If no more tasks can be created by the
OS, this error is replied.

Page 10/28

BITBUS APPLICATION PROGRAMMERS INTERFACE (BAPI)

Error code Name Related GBS/RAC
commands

Comment

0x082 GBS_ERR_REGISTER_OVFL GBS_CREATE If no more tasks can be created because
of a lack of register sets.

0x083 GBS_ERR_DUPLICATE_FID GBS_CREATE If there is already another task running
with the same FID in use, this error is
returned - no task is created.

0x084 GBS_ERR_NO_BUFFERS GBS_CREATE If there is not enough memory to create
a stack for the new task, this error is
returned - no task is created.

0x085 GBS_ERR_BAD_TASK_PRTY GBS_SUSPEND,
GBS_RESUME,
GBS_CREATE

The current priority or the priority found
in the ITD is invalid.

0x086 GBS_ERR_BAD_TASK_DESC GBS_CREATE If the ITD descriptor found is not valid -
no task is created.

0x087 GBS_ERR_NO_MEMORY All GBS/RAC An internal operation fails because of lack
of memory.

0x088 GBS_ERR_BAD_PROC_ADDR GBS_DEFINE_SERVICE The address parameter of the command
is not valid.

0x090 GBS_ERR_TIME_OUT ALL incl. non-GBS tasks A node can not be reached or a
communication link breaks caused by
successive timeouts. Note that not all
breaks in communication can be
signalled and therefor a layer7 timeout
has to be maintained by the application.

0x091 GBS_ERR_PROTOCOL ALL incl. non-GBS tasks General protocol error (sequencing error,
..)

0x093 GBS_ERR_NO_DEST_DEVICE ALL incl. non-GBS tasks Bad destination address (0 or 255)

0x095 GBS_ERR_PROTECTED ALL incl. non-GBS tasks The access to this command is protected
by a previous GBS_PROTECT command.

0x096 GBS_ERR_UNKNOWN_CMD ALL incl. non-GBS tasks The command is not known or not
supported.

0x097 GBS_ERR_BAD_CMD_LEN ALL incl. non-GBS tasks This error can be used to signal an
application that the node expected a
longer message.

0x98..0xfd - - Reserved by BEUG for future use

0x0FE GBS_ERR_BAD_SERVICE The command is not supported. This
error is an IEEE1118 add-on. It can
extends the
GBS_ERR_UNKNOWN_CMD error code.

0x0ff GBS_ERR_GENERAL ALL Unspecified error. Should not be used if
there is a chance to avoid it!

Page 11/28

2.2.4. BAPI error codes and miscellaneous constants

Error codes are related to functions returning BBHANDLE or INT32.

Error
code

Name Comment

0L BAPI_OK, BAPI_ERR_OK BAPI function call success code

-1L BAPI_ERR_TIMEOUT If „BitbusWaitMsg“ run into a timeout condition, this code is
returned.

-2L BAPI_ERR_NO_BOARD If an open (master or slave) fails because there is no board
installed, this is the error returned.

-3L BAPI_ERR_NO_CONNECTION This error is returned by the BAPI function „BitbusGetMsgLength“
if the slave „node“ can not be reached.

-4L BAPI_ERR_RESET_FAIL „BitbusReset“ fails caused by unspecified reasons.

-5L BAPI_ERR_INVALID_TID The task id in the „src_dest“ field of the BITBUS header is not
valid. See „3.1. BAPI in a multi-tasking environment“ for more
information.

-6L BAPI_ERR_INVALID_FID The FID is not valid

-7L BAPI_ERR_INVALID_HANDLE The bitbus handle returned by an open (master or slave) call is
not or no longer valid.

-8L BAPI_ERR_BUFF_TOO_SHORT You try to send a message that will not fit into the given buffer. It
is a good practice to retrieve the usable message length by calling
„BitbusGetMsgLength“ to prevent this error.

-9L BAPI_ERR_INVALID_FLAGS The flags setting in the „flags“ field of the BITBUS header is illegal.
See „3.1. BAPI in a multi-tasking environment“ for more
information.

-100L
and

lower

BAPI_ERR_USER Reserved for implementation specific errors. An implementor
should avoid to use user errors.

Value Name Comment

255 BAPI_MAX_MSG_LEN Maximum message length specified by IEEE1118

-1L BAPI_WAIT_FOREVER Eternal wait condition (BitbusWaitMsg)

0 BAPI_LOCAL_SCOPE Parameter for BitbusGetMsgCount

1 BAPI_GLOBAL_SCOPE Parameter for BitbusGetMsgCount

Page 12/28

BITBUS APPLICATION PROGRAMMERS INTERFACE (BAPI)

2.3. BAPI Datatypes

BAPI specifies several different data structures. The most important is the BITBUS
message itself.

2.3.1. Data packing

Manage packing of structures at byte boundary. See sample code for WATCOM
C/C++:

#if defined(__WATCOM__) // enable packing

#pragma pack(push)

#pragma pack(1)

#elif defined(__STDC__)

#pragma pack(1)

#endif

// place definition here ...

#if defined(__WATCOM__) // restore packing

#pragma pack(pop)

#endif

Page 13/28

2.3.2. Base types

typedef unsigned char UINT8; // unsigned 8 bit integer

typedef unsigned short UINT16; // unsigned 16 bit integer

typedef unsigned long UINT32; // unsigned 32 bit integer

typedef unsigned char BYTE; // same as UINT8

typedef unsigned short WORD; // same as UINT16

typedef unsigned long LWORD; // same as UINT32

typedef char INT8; // signed 8 bit integer

typedef short INT16; // signed 16 bit integer

typedef long INT32; // signed 32 bit integer

typedef INT32 BBHANDLE; // returned by BitbusOpen calls

Page 14/28

BITBUS APPLICATION PROGRAMMERS INTERFACE (BAPI)

2.3.3. BITBUS message

typedef struct {

 BYTE _res1; /* PRIVATE VALUE */

 BYTE _res2; /* PRIVATE VALUE */

 BYTE len; /* 7 + LENGTH OF DATA FIELD */

 BYTE flags; /* ROUTING BITS */

 BYTE node; /* MASTER: SLAVE ADDRESS. */

 /* SLAVE : NEVER TOUCH! */

 BYTE src_dest; /* OWN/TARGET TASK NUMBER (0-15/0-15) */

 BYTE com_res; /* REQUEST: GBS-/USER-COMMAND */

 BYTE data[248]; /* DATA FIELD */

 BYTE _res3; /* PRIVATE VALUE */

} BitbusMsg;

typedef BitbusMsg *pBitbusMsg;

Page 15/28

2.3.4. GBS-TASK time & date format

typedef struct {

 BYTE zone, /* TIME ZONE : 0 = GMT, 8 = PST */

 offset, /* TIME OFFSET : 0..59 MINUTES */

 day_of_week, /* 1..7, MONDAY = 1. */

 year, /* 1980 = 0, 2235 = 255. */

 month, /* 1..12, JANUARY = 1. */

 day, /* 1..31. */

 hour, /* 0..23. */

 min, /* 0..59. */

 sec; /* 0..59. */

} GbsTime;

typedef GbsTime *pGbsTime;

2.3.5. Implementation dependent types

These types maybe be defined and supplied by the BAPI implementor.

typedef struct {

 INT32 dummy;

} BitbusOpenData;

typedef BitbusOpenData *pBitbusOpenData;

Page 16/28

BITBUS APPLICATION PROGRAMMERS INTERFACE (BAPI)

2.4. BAPI Function reference

For each supported operating system, macro BAPICALL must be defined, macro could
be different at build time and at use time.

Future implementations of BAPI.H could add other routines having prefix "Bitbus"; no
implementor and user should name his own routines using this prefix. „BAPICALL“ is a
plattform depending macro. See 3.2. for sample macros for WATCOM C–Compiler.

Functions not implemented for some reasons should return graceful.

2.4.1. BAPI DLL/LIB naming conventions

BAPI implementations should follow the BAPI naming rules for DLL (dynamic link
library) and LIB (library) files. The table below gives the file name that will be extended
by the file type code („.DLL“, „.LIB“ ..).

Operating system File name

MSDOS / PCDOS / NWDOS et. al. BAPIDOS

DOS, 32-BIT protected mode BAPID32

Microsoft Windows 3.1 BAPIW16

Microsoft Windows 95, 98 BAPIW32

Microsoft Windows NT BAPINT

IBM OS/2 BAPIOS2

UNIX (LINUX) BAPIIX

Microware OS/9 BAPIOS9

QNX BAPIQNX

Page 17/28

I. Function: BitbusOpenMaster

Returns a handle to the entire network associated to "BitbusDevice" ("BBUS0", ...
"BBUSxx"); application "AppName" will then be enabled to act as a network master,
that is to send order messages and receive reply messages.

Parameters:

"AppName" is an individual name used to identify an application.

"BitbusDevice" is the logical name of the the Bitbus card; valid names are:
"BBUS0", "BBUS1", ... , "BBUSxx" (being xx a decimal number).

 "pData" is a pointer to a data structure containing additional, implementation
dependent parameters required to appropriately open the Bitbus card; see
definition of type "BitbusOpenData".

Return value:

If greater than or equal to 0, connection has successfully been established

Possible errors:

BAPI_ERR_NO_BOARD if no hardware was found

Prototype:

BBHANDLE BAPICALL BitbusOpenMaster (char *AppName,

 char *BitbusDevice,

 BitbusOpenData *pData);

Page 18/28

BITBUS APPLICATION PROGRAMMERS INTERFACE (BAPI)

II. Function: BitbusOpenSlave

Returns a handle to the card associated to "BitbusDevice" ("BBUS0", ... "BBUSxx");
application "AppName" will then be enabled to act as a slave of the network, that is to
wait for order messages and send reply messages.

Parameters:

"AppName" is an individual name used to identify an application.

"BitbusDevice" is the logical name of the the Bitbus card; valid names are:
"BBUS0", "BBUS1", ... , "BBUSxx" (being xx a decimal number).

"TaskId" is a number between 1 and 15, so that API can route incoming
order messages to the appropriate application; slave connections can be at
most 15; some implementation could let this number range up to 31.

"FunctionId" is a number between 0x002 and 0x0FE; a network master can
exchange messages with a slave application, by knowing its FID and by using
command GBS_GETFID to retrieve its TID.

"pData" is a pointer to a data structure containing additional, implementation
dependent parameters required to appropriately open the Bitbus card; see
definition of type "BitbusOpenData".

Return value:

If greater than or equal to 0, connection has successfully been established; if

Possible errors:

BAPI_ERR_NO_BOARD if no hardware was found

BAPI_ERR_INVALID_FID, if the fid is allready in use.

Prototype:

BBHANDLE BAPICALL BitbusOpenSlave (char *AppName,

 char *BitbusDevice,

 BYTE TaskId,

 BYTE FunctionId,

 BitbusOpenData *pData);

Page 19/28

III. Function: BitbusClose

Close a network connection (either master or slave).

Parameters:

"hdl" is the handle of the connection returned at open time.

Return value:

If equal to 0 (BAPI_OK), connection has successfully been closed

Possible errors:

BAPI_ERR_INVALID_HANDLE if the handle is invalid

Prototype:

INT32 BAPICALL BitbusClose (BBHANDLE hdl);

Page 20/28

BITBUS APPLICATION PROGRAMMERS INTERFACE (BAPI)

IV. Function: BitbusSendMsg

Sends an order message (master application) or a reply message (slave application).

Parameters:

"hdl" is the handle of the connection returned at open time.

"pMsg" is a pointer to a message structure which must be allocated and filled
by the application program.

Return value:

If equal to 0 (BAPI_OK), connection has successfully been closed

Possible errors:

BAPI_ERR_INVALID_HANDLE if the handle is invalid

BAPI_ERR_BUFFER_TOO_SHORT if the message will not fit into the internal
buffers.

*BAPI_ERR_INVALID_FLAGS if the flags are not correct

*BAPI_ERR_INVALID_TID if the source task id is not valid

*BAPI should prevent this types of errors by managing this bits and bytes
automatically.

Prototype:

INT32 BAPICALL BitbusSendMsg (BBHANDLE hdl,

 pBitbusMsg pMsg);

Page 21/28

V. Function: BitbusWaitMsg

Waits for an order message (slave application) or for a reply message (master
application) for a specified amount of time, at most.

Parameters:

"hdl" is the handle of the connection returned at open time.

"pMsg" is a pointer to a message structure which must be allocated by the
application program; the structure is filled by the function, if a message has
actually been received.

"tout" is the maximum number of milliseconds the function has to wait for
the message; value 0 is used for polling; value -1 (BAPI_WAIT_FOREVER) is
used for indefinite wait.

Return value:

Length of received message. If "tout" is 0 and returned length is 0, polling has
been unsuccessful. If returned length is greater than 0 (7 to 255), see field
"com_res" of message structure (might be GBS_ERR_TIMEOUT). If returned
length is less than 0, an error condition occurred.

Possible errors:

BAPI_ERR_INVALID_HANDLE if the handle is invalid

BAPI_ERR_TIMEOUT if the function runs into a timeout condition

BAPI_ERR_BUFFER_TOO_SHORT if the message will not fit into the internal
buffers.

Prototype:

INT32 BAPICALL BitbusWaitMsg (BBHANDLE hdl,

 pBitbusMsg pMsg,

 INT32 tout);

Page 22/28

BITBUS APPLICATION PROGRAMMERS INTERFACE (BAPI)

VI. Function: BitbusReset

Used by master applications only, it resets a slave node.

Parameters:

"hdl" is the handle of the connection returned at open time.

"node" is the node to be reset (1 to 250).

Return value:

If equal to 0 (BAPI_OK), reset has been successful

Possible errors:

BAPI_ERR_INVALID_HANDLE if the handle is invalid

BAPI_ERR_RESET_FAIL if the reset function fails

Prototype:

INT32 BAPICALL BitbusReset (BBHANDLE hdl,

 BYTE node);

Page 23/28

VII. Function: BitbusGetMsgLength

Used by master applications only, it returns the maximum length of messages which
can be exchanged with a specified slave node.

Parameters:

"hdl" is the handle of the connection returned at open time.

Return value:

If greater than 0 (7 to 255), function has been successful.

Possible errors:

BAPI_ERR_INVALID_HANDLE if the handle is invalid

BAPI_ERR_INVALID_NO_CONNECTION if the node could not be reached.

Prototype:

INT32 BAPICALL BitbusGetMsgLength (BBHANDLE hdl,

 BYTE node);

Page 24/28

BITBUS APPLICATION PROGRAMMERS INTERFACE (BAPI)

VIII. Function: BitbusGetMsgCnt

It returns the number of Bitbus messages handled by the API for the current connection
(BAPI_LOCAL_SCOPE) or for all the connections associated to the same device
(BAPI_GLOBAL_SCOPE).

Parameters:

"hdl" is the handle of the connection returned at open time.

"scope" can assume value BAPI_LOCAL_SCOPE or value
BAPI_GLOBAL_SCOPE.

Return value:

If greater than or equal to 0, function executes successfully.

Possible errors:

BAPI_ERR_INVALID_HANDLE if the handle is invalid

Prototypes:

INT32 BAPICALL BitbusGetMsgCnt (BBHANDLE hdl,

 WORD scope);

Page 25/28

IX. Function: BitbusGetAppNames

It returns a list of application names, for all applications which are currently connected
to the same device.

Parameters:

"hdl" is the handle of the connection returned at open time.

"buffer" is the character string which will contain the list of names; each name
is terminated by '\n'; the whole list is terminated by '\0'.

"length" is the size of "buffer"; if it is less than the required length, the list of
names will be truncated and an error code will be returned.

Return value:

If greater than or equal to 0, function has been successful.

Possible errors:

BAPI_ERR_INVALID_HANDLE if the handle is invalid

BAPI_ERR_BUFFER_TOO_SHORT if the name list will not fit into the users
buffer.

Prototype:

INT32 BAPICALL BitbusGetAppNames (BBHANDLE hdl,

 char *buffer,

 WORD length);

Page 26/28

BITBUS APPLICATION PROGRAMMERS INTERFACE (BAPI)

3. BAPI implementation notes

3.1. BAPI in a multi-tasking environment

In a multi tasking environment, BAPI implementation should take care that the source /
destination task fields and the flags in the BITBUS message header fit with the BAPI
channel handle values to prevent message miss routing and to prevent complex error
handling.

3.2. Sample OS depending macros for WATCOM-C

#undef BAPICALL

#if defined(BUILDING_BAPI)

 #if defined (__OS2__)

 #define BAPICALL EXPENTRY

 #elif defined (__DOS__)

 #define BAPICALL __cdecl

 #elif defined (__MDOS__)

 #define BAPICALL __cdecl

 #elif defined (__WINDOWS__)

 #define BAPICALL __far pascal __export

 #elif defined (__NT__)

 #define BAPICALL __declspec(dllexport) __stdcall

 #elif defined (__WINDOWS_386__)

 #define BAPICALL __declspec(dllexport) __stdcall

 #endif

#else

Page 27/28

 #if defined (__OS2__)

 #define BAPICALL APIENTRY

 #elif defined (__DOS__)

 #define BAPICALL __cdecl

 #elif defined (__MDOS__)

 #define BAPICALL __cdecl

 #elif defined (__WINDOWS__)

 #define BAPICALL __far pascal __export

 #elif defined (__NT__)

 #define BAPICALL __declspec(dllimport) __stdcall

 #elif defined (__WINDOWS_386__)

 #define BAPICALL __declspec(dllimport) __stdcall

 #endif

#endif

Page 28/28

	Contents
	1. What is it all about?
	2. The BAPI reference
	2.1. BAPI naming conventions
	2.2. BAPI constant values
	2.2.1. The commands
	2.2.2. Special parameters and constants
	2.2.3. Error codes
	2.2.4. BAPI error codes and miscellaneous constants
	2.3. BAPI Datatypes
	2.3.1. Data packing
	2.3.2. Base types
	2.3.3. BITBUS message
	2.3.4. GBS-TASK time & date format
	2.3.5. Implementation dependent types
	2.4. BAPI Function reference
	2.4.1. BAPI DLL/LIB naming conventions
	I. Function: BitbusOpenMaster
	II. Function: BitbusOpenSlave
	III. Function: BitbusClose
	IV. Function: BitbusSendMsg
	V. Function: BitbusWaitMsg
	VI. Function: BitbusReset
	VII. Function: BitbusGetMsgLength
	VIII. Function: BitbusGetMsgCnt
	IX. Function: BitbusGetAppNames
	3. BAPI implementation notes
	3.1. BAPI in a multi-tasking environment
	3.2. Sample OS depending macros for WATCOM-C

