
APPLICATION
NOTE

AP-429

May 1989

Application Techniques for the
83C152 Global Serial Channel
in CSMA/CD Mode

BOB JOHNSON

Embedded Control Applications Engineering

Order Number: 270720-001

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoev-
er, including infringement of any patent or copyright, for sale and use of Intel products except as provided in
Intel’s Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer
Products may have minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

²Since publication of documents referenced in this document, registration of the Pentium, OverDrive and
iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1996

APPLICATION
TECHNIQUES FOR THE

83C152 GLOBAL SERIAL
CHANNEL IN CSMA/CD

MODE

CONTENTS PAGE

INTRODUCTION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

GSC INITIALIZATION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 9

INITIALIZATION (PROTOCOL
DEPENDENT) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 9

Baud Rate ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 9

Preamble Length ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 10

Backoff Mode ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 10

Interframe Space ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 11

Jamming Signal ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 15

Slot Time ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 16

Addressing ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 16

INITIALIZATIONÐPROTOCOL
INDEPENDENT ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 18

Clearing Collision Counter ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 18

Control of the GSC ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 19

Initializing DMA ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 19

Initializing Counters and Pointers ÀÀÀÀÀÀÀÀÀÀ 20

Enabling Receiver and Receiver
Interrupts ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 20

Enabling Transmitter and Transmit
Interrupts ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 21

STARTING, MAINTAINING, AND
ENDING TRANSMISSIONS ÀÀÀÀÀÀÀÀÀÀÀÀ 22

STARTING, MAINTAINING, AND
ENDING RECEPTIONS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 23

SUMMARY ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 24

SOFTWARE EXAMPLE ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ A-1

CONTROLLING THE BACKOFF
ALGORITHM ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ B-1

REFERENCES ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ C-1

AP-429

INTRODUCTION

The 83C152 is an 80C51BH based microcontroller with
DMA capabilities and a high speed, multi-protocol,
synchronous serial communication interface called the
Global Serial Channel (GSC). The GSC uses packe-
tized data frames that consist of a beginning of frame
(BOF) flag, address byte(s), data byte(s), a Cyclic Re-
dundancy Check (CRC), and an End Of Frame (EOF)
flag. An example of this type of packet is shown in
Figure 1. Most 80C152 users will be familiar with
UARTs, another type of serial interface. Figures 1 and
2 compare the two types of frames. The UART uses
start and stop bits with a data byte between as shown in
Figure 2. The 83C152 retains the standard MCSÉ-51
UART.

The 83C152 will be referred to as the ‘‘C152’’ through-
out this application note to refer to the device. This

application note deals with initializing and running the
GSC in CSMA/CD mode only. Carrier Sense Multiple
Access with Collision Detection (CSMA/CD) is a com-
munication protocol that allows two or more stations to
share a common transmission medium by sensing when
the link is idle or busy (Carrier Sense). While in the
process of transmission, each station monitors its own
transmission to identify if and when a collision occurs.
When a collision occurs, each station involved in the
transmission executes a backoff algorithm and reat-
tempts transmission (Collision Detection). This access
method allows all stations an equal chance to transmit
its own packet and thus is referred to as a ‘‘peer-to-
peer’’ type protocol (Multiple Access). Even in
CSMA/CD mode, the user has several variations that
can be implemented. Table 1 summarizes the various
CSMA/CD options available. Most of these variations
will be discussed in this application note.

270720–1

Figure 1. Packetized Frame

270720–2

Figure 2. UART Byte

1

AP-429

Table 1. CSMA/CD Variations Supported by C152

CSMA/CD Parameter Options Supported by Hardware

Preamble 8-Bits 32-Bits 64-Bits

Acknowledgement Hardware Software

Backoff Algorithm Normal Alternate Deterministic

CRC 16-Bit 32-Bit

Address Recognition 8-Bit 16-Bit S/W Extendable

Address Masking 8-Bit 16-Bit

Jam Type D.C. CRC

GSC Servicing CPU DMA

Data Source (Transmitter) External RAM Internal RAM SFR

Data Destination (Receiver) External RAM Internal RAM SFR

GSC Interface Direct Buffers

Baud Rate 1.709 KPBS (minimum) 2.062 MPBS (maximum)

Ý Collisions Permitted 0 to 8

Ý of Slots (Deterministic Only) 1 to 63

Time Slot 1 to 256 B/Ts

IFS 2 to 256 B/Ts

In this application note initializing the GSC is covered
first. Starting, maintaining, and ending transmissions
and receptions will then be discussed. Included in these
sections will be how interrupts are generated, the soft-
ware needed to respond to interrupts, and restarting the
process. There are four interrupts used in conjunction
with the GSC. They are: Transmit Valid, Transmit Er-
ror, Receive Valid, and Receive Error. A complete soft-
ware example is shown in Appendix A. Included in the
software are comments describing what and why cer-
tain sections of code are needed.

Figures 3 and 4 are flow charts that show the entire
process of using the C152 GSC under CPU or DMA
control. Both flow charts begin with initialization
which is described in the next section. Each step in the
flow charts will be described. In general, the text com-
bines CPU and DMA control of the GSC and discusses
pros and cons of each.

These flow charts were created from lab experiments
performed with the C152. The purpose of the lab exper-
iments was to implement a CSMA/CD link, over
which data could be passed from one station to another.
As a source for data to transmit and a method to dis-
play the data received, two terminals were used. Con-
necting two terminals together would not normally be
encountered in an actual application. However, con-
necting two terminals together provided a convenient
configuration on which to develop the necessary soft-
ware. Connecting two terminals also created a base

from which the user could implement many different
designs utilizing the software provided in Appendix A.

The final experiment consisted of two parts: 1) data
received by the UART to be transmitted by the GSC
and 2) data received by the GSC to be transmitted by
the UART. In both cases a terminal was connected to
the UART on each C152 and the GSC was under
DMA control. There were eight external 120 byte buff-
ers available. Four buffers were used to store the data
received by the UART and four buffers used to store
the data received by the GSC.

As data is received from the UART each byte is exam-
ined, placed in an external buffer and a counter incre-
mented. Each byte is examined to see if it equals an
ASCII ‘‘carriage return’’ (0DH). If a match occurs, the
program assumes it is the end of a line and the end of
the current buffer. Once a carriage return is detected, a
line feed is added and the byte count incremented. The
counter is then used to load the byte count register for
the appropriate DMA channel. Once a buffer is closed
it’s flagged as having data available for the GSC to
transmit. If the next buffer was not filled with data
waiting to be transmitted by the GSC, it is made avail-
able for receiving the next line. Once the GSC transmits
the entire packet the buffer is flagged as empty and
available for storing new data from the UART.

When a packet is received by the GSC, the data is
placed in an external buffer. When the packet ends, the

2

AP-429

number of bytes received is calculated. The current
buffer is marked to indicate that the data is ready for
output by the UART. The calculated byte count is used
to identify how many bytes the UART should send to
the terminal. When the UART sends the proper num-
ber of bytes, the buffer is made available so that the
GSC may store data in it.

This has all been subjected to limited testing in the lab
and verified to work with two terminals. The software
has only been developed to the point that the terminals

may display each other’s outgoing messages and no far-
ther. This means that some error conditions are not
resolved with the current version of the software. For
instance, if two terminals transmit data at approximate-
ly the same time, both messages may be displayed, even
if the received data occurs within the middle of a sen-
tence being typed. For reasons such as this, the soft-
ware and hardware presented should not be used for a
production product without thorough testing in the ac-
tual application.

CPU Only

270720–3

Figure 3. GSC CPU Flow Chart

3

AP-429

270720–4

Figure 3. GSC CPU Flow Chart (Continued)

4

AP-429

270720–5

270720–6

Figure 3. GSC CPU Flow Chart (Continued)

5

AP-429

270720–7

Figure 4. GSC DMA Flow Chart

6

AP-429

270720–8

Figure 4. GSC DMA Flow Chart (Continued)

7

AP-429

270720–9

270720–10

Figure 4. GSC DMA Flow Chart (Continued)

8

AP-429

GSC INITIALIZATION

During initialization, user software sets up the hard-
ware in the GSC so that communication may begin and
institute the parameters specified by the protocol. This
can further be sub-divided into two more sections. The
first deals with those items which will vary according to
the protocol being implemented, referred to as protocol
dependent. The second section deals with those items
that need to be accomplished in the same manner re-
gardless of the protocol and are referred to as protocol
independent. Table 2 shows those items of initialization
which are protocol dependent. Once set up, the items in
Table 2 do not have to be repeated when starting a new
reception or transmission.

Table 2. Protocol Dependent Initialization

baud rate

preamble length

backoff mode (random or deterministic)

CRC

interframe space (IFS)

type of jamming signal used

slot time

addressing

enabling Hardware Based Acknowledge (HBA)

Table 2 introduces two new terms that previous
CSMA/CD users may not be familiar with; Hardware
Based Acknowledge (HBA) and Deterministic Colli-
sion Resolution (DCR). HBA is a method in which the
GSC receiver hardware will acknowledge the reception
of a valid frame and DCR is a collision resolution algo-
rithm in which the user assigns a specific slot number
to each station on the link. HBA will be covered in its
own section, located later in this document. For a de-
scription on DCR or more information on HBA, please
refer to the 83C152 Hardware Description in the 8-bit
Embedded Controller Handbook (order Ý 270645).

Table 3 shows items which are protocol independent.
All of the items in Table 3, except for determining how
the GSC is controlled, will need to be repeated after
each GSC operation, before a reception or transmission
starts again.

Table 3. Protocol Independent Initialization

clearing the collision counter register

control of the GSC

initializing DMA (only if used)

initializing counters and pointers

enabling the receiver and receive interrupts

enabling the transmitter and transmit interrupts

INITIALIZATION
(PROTOCOL DEPENDENT)

This section deals with those items which are part of
initialization which vary according to the protocol be-
ing implemented. These parameters will typically be
dictated by rules of the protocol or hardware environ-
ment. In addition, some parameters will vary according
to the software implemented by the programmer. For
instance, interframe space (IFS) is one of the parame-
ters dependent on other software developed to imple-
ment a protocol with the C152.

BAUD RATEÐWhen initializing the GSC baud rate
there are two major considerations. The first is that the
GSC baud rate can only be programmed in multiples of
1/8 the oscillator frequency when using the internal
baud rate generator as shown in the formula given be-
low. If a 1 MBPS rate is desired, the oscillator frequen-
cy must be 16 MHz or 8 MHz. This becomes less crit-
ical when the GSC baud rate is much lower than the
desired oscillator frequency.

GSC baud rate e

Fosc

(BAUD a 1) c 8

UART baud rate
(Mode 3)

e

(2smod) (Fosc)

(256 b TH1) c 384

The second major consideration only matters if the
UART is used. In this case, when deciding on GSC
baud rate and oscillator frequency the effect on the
UART baud rate must be understood. As shown in the
formula above, when using a timer in mode 3, baud
rates generated for the UART are in multiples of 1/384
the oscillator frequency. This means that standard
UART baud rates such as 9600, 2400, 1200, etc. and
common GSC baud rates such as 2 MBPS, 1 MBPS,
and 640 KBPS, cannot be reached with any single oscil-
lator frequency. This can be worked around with meth-
ods such as externally clocking the timers. Externally
clocking the GSC cannot be done when CSMA/CD is
selected. For instance, the maximum oscillator frequen-
cy that can be used to achieve a standard UART baud
rate of 9600 is 14.7456 MHz, which works out to a
maximum GSC baud rate of 1.8432 MBPS which can
be further divided down by multiples of 8. The program
example in Appendix A uses these values.

9

AP-429

To select a desired baud rate, the Special Function Reg-
ister BAUD is loaded with an appropriate number ac-
cording to the previously given formula. For instance:

MOV BAUD,#0 ;selects a baud rate
;of 1/8 the oscillator
;frequency

or:

MOV BAUD,#1 ;selects a baud rate
;of 1/16 the oscillator
;frequency

at the other extreme:

MOV BAUD,#0FFH ;selects a baud rate
;of 1/2048 the
;oscillator frequency
;(7.2K @ 14.7456 MHz)

PREAMBLE LENGTHÐA preamble serves four
functions in CSMA/CD mode: to provide synchroniza-
tion for the following frame, to contain the Beginning
Of Frame flag (BOF), to let other stations on the link
know that the link is being used, and to provide a win-
dow where collisions may occur and automatically re-
attempt transmission (backoff). Figure 5 shows what an
eight-bit preamble would look like.

The C152 receiver will synchronize to the first tran-
sition and resynchronize on every following transition.
For this reason a minimum preamble length can be
used. On the C152 the minimum preamble length is 8-
bits. However, due to network topography, other devic-
es used, or the protocol being implemented, a larger
number of transitions may be required. In these cases
the C152 can be programmed for either a 32- or 64-bit
preamble.

To select an 8-bit preamble:
GMOD e XXXXX01X

To select a 32-bit preamble:
GMOD e XXXXX10X

To select a 64-bit preamble:
GMOD e XXXXX11X

BACKOFF MODEÐThe C152 has three types of
backoff modes: Normal Backoff, Alternate Backoff,
and Deterministic Backoff. Normal backoff and alter-
nate backoff are very similar and the only difference
between them is when the slot timer begins counting
time slots.

In normal backoff each station randomly chooses a slot
based on the number of collisions that have previously
occurred. After the idle (EOF) is detected, the inter-
frame space timer and slot time timer begin at the same
time. Since all devices are prevented from beginning a
transmission during the interframe space, that amount
of time is taken away from a device which has chosen
slot 0. When a slot time is significantly larger than the
interframe space, this should pose no problem as slot 0
will still provide a window for the device to begin trans-
mission. There is a problem when the interframe space
is larger than the slot time. In this case, if a device
chooses slot 0, it will not be allowed to transmit because
the interframe space has not yet expired. This decreases
efficiency of the backoff algorithm and reduces band-
width. Normal backoff should be used when the slot
time is greater than the interframe space period.

In alternate backoff, after the idle is detected, only the
interframe space timer begins. When the interframe
space timer expires, the slot time timer begins. This
results in extending the total amount of time spent in
the backoff algorithm but preserves the entire amount
of time for each slot that may be selected. Alternate
backoff is recommended when the slot time is less than
or equal to the interframe space period.

The deterministic backoff mode is a new resolution
mode introduced by the C152. Deterministic backoff
utilizes peer-to-peer communication while in normal
transmission mode, and a prioritized or a deterministic
algorithm while performing the resolution. Determi-
nistic backoff operates by following standard CSMA
rules when attempting to transmit a packet for the first
time. However, if a collision is detected each station is

270720–11

Figure 5. 8-Bit Preamble (also HBA Waveform)

10

AP-429

restricted to only transmit during its assigned slot. The
slot number is assigned by the user and up to 63 slots
are available. A more detailed description on determi-
nistic backoff is in the 80C152 Hardware Description
chapter in the 8-bit Embedded Controller Handbook.
Deterministic backoff is recommended if there are 64
stations or less in a network and the user wishes to
remove the uncertainty that arises when using one of
the other two random resolution methods already de-
scribed. Another reason for using deterministic resolu-
tion is if a user wishes to assign a priority to one sta-
tion’s messages over that of another station’s during the
collision resolution period. The user should be aware
that most CSMA/CD protocols that already have stan-
dards associated with them preclude the use of determi-
nistic backoff.

To select normal backoff:
GMOD e X00XXXXX
MYSLOT e X0XXXXXX

To select alternate backoff:
GMOD e X11XXXXX
MYSLOT e X0XXXXXX

To select deterministic backoff:
GMOD e X11XXXXX
MYSLOT e X1XXXXXX

CRCÐThe C152 offers a choice of two types of CRC.
One type of CRC is CRC-CCITT (16-bit) used in
HDLC (Reference 1). The second CRC available is
named AUTODIN-II (32-bit) which is used in 802.3
(Reference 2). The following formulas give the CRC
generating polynomial of each.

CRC-CCITT e X16 a X12 a X5 a 1

AUTODIN-II e X32 a X26 a X23 a

X22 a X16 a X12 a

X11 a X10 a X8 a

X7 a X5 a X4 a

X2 a X a 1

The selection of which CRC to use is normally dictated
by the protocol being implemented. When selecting a
CRC, the user should remember that the CRC length
also determines the jam time, which in turn will affect
the slot time.

To select the 16-bit CRC:
GMOD e XXXX0XXX

To select the 32-bit CRC:
GMOD e XXXX1XXX

INTERFRAME SPACEÐThe interframe space pro-
vides a period of time for the receiver and physical me-
dium to fully recover from a previous reception and be
prepared to accept a new message. To fulfill these re-
quirements the value programmed into IFS should be
greater than or equal to the ‘‘turn around’’ time plus
round trip propagation time. ‘‘Turn around’’ time is the
amount of time it takes for a receiver to be re-enabled
after having just received a previous packet. Calculat-
ing worst case turn around time is very complicated
when the GSC is under CPU control. This is because
the Receive Done bit (RDN), which signifies the end of
a received packet, does not generate an interrupt. The
user is required to periodically poll Receive Done to
ascertain when incoming packets are complete. Since
the polling sequence is sometimes altered by interrupts,
these delays must also be taken into account when de-
ciding what interframe space will be used. As an alter-
native, the user could choose to set-up a timer that will
periodically poll the receive done bit and give a more
reliable idea of what the turn around time will be. This
will require that the timer interrupt be assigned a high-
er priority than any of the other interrupts. Since the
RDN bit will be set approximately two bit times after
the last CRC bit is received, in some situations it is
possible to add a delay to a receive valid interrupt and
check Receive Done just prior to leaving the routine.
As a last resort a user could ignore the maximum re-
sponse time and instead pick a number that works most
of the time. The only negative result of doing this is
that some frames may be missed. If acknowledgements
are used, that frame would be retransmitted. However,
if acknowledgements are not used, the data would be
lost forever.

The programming quantum for interframe space is in
bit times where a bit time is equal to 1/baud rate. The
only hardware restrictions the C152 places on inter-
frame space is that the number programmed must be
even and the maximum value is 256 bit times. Other
than that, the user can decide what interframe space
value will be used. The interframe space should be the
same for all stations on any given network.

To program the interframe space:
IFS e nnnnnnn0

where nnnnnnn0 e number of bit times programmed
by the user.

The following two examples show the actual code the
C152 will execute in response to a receive interrupt.
Only those portions of the code associated with servic-
ing the interrupt are shown. Added to this software, on
the left edge, is the number of machine cycles it takes to
execute each instruction. With this extra information
the required interframe space can be calculated by to-
taling the number of machine cycles.

11

AP-429

The first example gives the flow used for a valid GSC
reception and the other example shows the steps taken
to service an invalid reception. These examples were
created by first implementing a working prototype.
Once completed, the software used to service the appro-
priate interrupt was pulled out, selecting the worst case
(longest) flow. Finally, each step was sequentially
pieced together to demonstrate how the application
services an interrupt. These software fragments are tak-
en from the program in Appendix A.

The total number of machine cycles it takes to service a
valid reception (59 cycles) or an invalid reception (115
cycles) is also given. As shown, an invalid reception
takes the longest amount of time to service. To 115
cycles we add maximum interrupt latency, which is 9
machine cycles. The total comes out to be 124 machine
cycles. It should be mentioned that the typical interrupt
latency in the C152 would be about 5 machine cycles.

A 9 machine cycle latency can only occur if the inter-
rupt happens during an access to an interrupt register
followed by a multiply or divide instruction and as-
sumes that the receive error interrupt is the only high
priority interrupt.

A bit time works out to be 8 oscillator periods
(BAUD e 0) in this example. To calculate the number
to load into IFS the following formula is used. ‘‘12’’
comes about from the 12 oscillator periods that make
up a machine cycle.

IFS e

12 c (Ý of machine cycles to service the interrupt)

(Ý of oscillator periods per bit time)

This works out to be:

(12 c 124)/8 e 186

This number should have a guardband added in case
minor changes must be made in the routines. Since the
only other enabled interrupt is the UART, a small
guardband of 10 was used. The interframe space chosen
is 196.

12

AP-429

(# of
machine LOC OBJ LINE SOURCE
cycles 002B 358 ORG 2BH

359 GSC REC VALID:
(2) 002B 020568 360 JMP GSC VALID REC

361
1680 GSC VALID REC:

(2) 0568 C082 1682 PUSH DPL
(2) 056A C083 1683 PUSH DPH
(2) 056C C0E0 1684 PUSH ACC
(2) 056E C0D0 1685 PUSH PSW
(2) 0570 71B0 1688 CALL NEW BUFFER2 IN

1689
1031 NEW BUFFER2 IN:

(2) 03B0 207343 1064 JB GSC IN MSB,GSC IN 2
1067
1168 GSC IN 2D 2A:

(2) 03F6 20721E 1170 JB GSC IN LSB,GSC IN 2
1172
1173 GSC IN 2D:

(2) 03F9 2074F6 1175 JB BUF2D ACTIVE,BUFFER
(2) 03FC 758200 1179 MOV DPL,#LOW (BUF2C ST
(2) 03FF 758303 1180 MOV DPH,#HIGH (BUF2C S
(1) 0402 C3 1184 CLR C
(1) 0403 7476 1186 MOV A,#(MAX LENGTH) -
(1) 0405 95F2 1192 SUBB A,BCRL1
(2) 0407 F0 1194 MOVX @DPTR,A
(1) 0408 D275 1197 SETB BUF2C ACTIVE
(1) 040A D272 1202 SETB GSC IN LSB
(1) 040C D273 1203 SETB GSC IN MSB
(2) 040E 757981 1206 MOV GSC INPUT LOW,#LOW
(2) 0411 757803 1207 MOV GSC INPUT HIGH,#HI
(2) 0414 020432 1211 JMP NEW BUF2 IN END

1212
1251 NEW BUF2 IN END:

(2) 0432 8579D2 1253 MOV DARL1,GSC INPUT LO
(2) 0435 8578D3 1254 MOV DARH1,GSC INPUT HI
(2) 0438 75F300 1258 MOV BCRH1,#0
(2) 043B 75F278 1259 MOV BCRL1,#MAX LENGTH
(2) 043E 22 1261 RET

1263
(1) 0572 439301 1693 ORL DCON1,#01
(2) 0575 D2E9 1695 SETB GREN
(2) 0577 D0D0 1697 POP PSW
(2) 0579 D0E0 1698 POP ACC
(2) 057B D083 1699 POP DPH
(2) 057D D082 1700 POP DPL
(2) 057F 32 1702 RETI

59 TOTAL CYCLES

Example 1. GSC Receive Valid Service Routine

13

AP-429

(# of
machine LOC OBJ LINE SOURCE
cycles 0033 362 ORG 33H

363 GSC REC ERROR:
(2) 0033 020580 364 JMP GSC ERROR REC

365
1703 GSC ERROR REC:

(2) 0580 C082 1705 PUSH DPL
(2) 0582 C083 1706 PUSH DPH
(2) 0584 C0E0 1707 PUSH ACC
(2) 0586 C0D0 1708 PUSH PSW

1735 RCABT CHECK:
(2) 0588 30EE07 1736 JNB RCABT,OVR CHECK

1737
1744 OVR CHECK:

(2) 0592 30EF07 1745 JNB OVR,CRC CHECK
1746
1753 CRC CHECK:

(2) 059C 30EC07 1754 JNB CRCE,AE CHECK
(2) 059F 78E7 1756 MOV ERROR POINTER,#CRC
(2) 05A1 5175 1758 CALL INCREMENT COUNTER

1759
560 INCREMENT COUNTER:

(1) 0275 D3 562 SETB C
(1) 0276 7F06 564 MOV R7,#6

565
566 INC COUNT LOOP:

(1*6) 0278 E6 568 MOV A,@ERROR POINTER
(1*6) 0279 3400 570 ADDC A,#0
(1*6) 027B F6 572 MOV @ERROR POINTER,A
(1*6) 027C 18 574 DEC ERROR POINTER
(2*6) 027D DFF9 576 DJNZ R7,INC COUNT LOOP
(2) 027F 4001 578 JC COUNTER OVERFLOW

588
589 COUNTER OVERFLOW:

(2) 0282 22 591 RET
592

(2) 0281 22 587 RET
588

(2) 05A3 0205AA 1760 JMP REC ERROR COUNT END
1761
1767 REC ERROR COUNT END:

(2) 05AA 71B0 1772 CALL NEW BUFFER2 IN
1773
1031 NEW BUFFER2 IN:
1063

(2) 03B0 207343 1064 JB GSC IN MSB,GSC IN 2

1168 GSC IN 2D 2A:
(2) 03F6 20721E 1170 JB GSC IN LSB,GSC IN 2

1171

Example 2. GSC Receive Error Service Routine

14

AP-429

(# of
machine LOC OBJ LINE SOURCE
cycles 1172 ORG 33H

1173 GSC IN 2D:
(2) 03F9 2074F6 1175 JB BUF2D ACTIVE,BUFFER
(2) 03FC 758200 1179 MOV DPL,#LOW (BUF2C ST
(2) 03FF 758303 1180 MOV DPH,#HIGH (BUF2C S
(1) 0402 C3 1184 CLR C
(1) 0403 7476 1186 MOV A,#(MAX LENGTH) -
(1) 0405 95F2 1192 SUBB A,BCRL1
(2) 0407 F0 1194 MOVX @DPTR,A
(1) 0408 D275 1197 SETB BUF2C ACTIVE
(1) 040A D272 1202 SETB GSC IN LSB
(1) 040C D273 1203 SETB GSC IN MSB
(2) 040E 757981 1206 MOV GSC INPUT LOW,#LOW
(2) 0411 757803 1207 MOV GSC INPUT HIGH,#HI
(2) 0414 020432 1211 JMP NEW BUF2 IN END

1212
1251 NEW BUF2 IN END:

(2) 0432 8579D2 1253 MOV DARL1,GSC INPUT LO
(2) 0435 8578D3 1254 MOV DARH1,GSC INPUT HI
(2) 0438 75F300 1258 MOV BCRH1,#0
(2) 043B 75F278 1259 MOV BCRL1,#MAX LENGTH
(2) 043E 22 1261 RET

1262
(2) 05AC 439301 1774 ORL DCON1,#01
(1) 05AF D2E9 1776 SETB GREN
(2) 05B1 D0D0 1778 POP PSW
(2) 05B3 D0E0 1779 POP ACC
(2) 05B5 D083 1780 POP DPH
(2) 05B7 D082 1781 POP DPL
(2) 05B9 32 1783 RETI

115 TOTAL Cycles

Example 2. GSC Receive Error Service Routine (Continued)

JAMMING SIGNALÐThe purpose of a jam is to in-
sure all stations on a link detect that a collision has
occurred and reject that frame. To meet this need, the
C152 offers two types of jamming signals. One type of
jam is the D.C. jam (Figure 6) and another type is
called the CRC (Figure 7) jam. A jam is forced by the
TxD pin after a collision is detected but after the pre-
amble ends if the preamble is not yet complete. The
D.C. jam forces a constant logic ‘‘0’’ for a period of
time equal to the CRC length. The CRC jam takes the
CRC calculated up to the point when a collision occurs,
complements the CRC, and transmits that pattern. The
CRC jam should be used when A.C. coupling is used in

a network. A.C. coupling normally implies that pulse
transformers or capacitors are used to connect to the
serial link. In these types of circuit interfaces, the D.C.
jam may not be passed through reliably. One drawback
of the CRC jam is that it does not always guarantee
that all stations on a link will detect the jamming signal
as there are no Manchester code violations inherent in
the waveform. The D.C. jam is recommended whenever
it can be used since this type of jam will always be
detected by forcing Manchester code violations. Some
protocols specify a specific type of jam signal that
should be used and the user will have to decide if the
C152 can fulfill those requirements.

270720–12

Figure 6. D.C. Jam

15

AP-429

270720–13

Figure 7. CRC Jam

To select D.C. jam:
MYSLOT e 1XXXXXXX

To select CRC jam:
MYSLOT e 0XXXXXXX

SLOT TIMEÐIn CSMA/CD networks a slot time
should be equal to or larger than the sum of round trip
propagation time plus maximum jam time. The slot
time is used in the backoff algorithm as a rescheduling
quantum. The slot time is programmed in bit times and
in the C152 can vary from 1 to 256.

To program the slot time:
SLOTTM e nnnnnnnn

ADDRESSINGÐWhen discussing the subject of ad-
dressing with respect to the C152, the subject should be
broken down into three major topics. These topics are:
address length, assignment of addresses, and address
masking.

Address LengthÐThe C152 gives a user a choice of
either 8 or 16 bits of address recognition. To select 8-bit
addressing the user must set the AL bit in GMOD to 0.
Setting AL to 1 selects 16-bit addressing. Address rec-
ognition can be extended with software by examining
subsequent bytes for a match. The only part of the GSC
hardware that utilizes address length is the receiver.
The receiver uses address length to determine when an
incoming packet matches a user assigned address. Since
transmission of addresses is done under software con-
trol, the transmitter does not use the address length bit.
All bits following BOF are loaded into RFIFO, includ-
ing address. The transmit circuitry is involved with ad-
dressing only if HBA is used. In this case, when HBA is
selected, the transmitter must know whether or not the
sending address was even or odd. Even addresses re-
quire an acknowledgement back and odd addresses do
not.

When transmitting, the user must insert a destination
address in the frame to be transmitted. This is done by
loading the appropriate address as the first byte or two
bytes of data. If a source (sending) address is also to be
sent, the user must place that address into the proper
position within a packet according to the protocol being
implemented.

To select 8-bit addresses:
GMOD e XXX0XXXX

To select 16-bit addresses:
GMOD e XXX1XXXX

Address AssignmentÐWhen assigning an address to a
station, there are several factors to consider. To begin
with, there are four 8-bit address registers in the C152:
ADR0, ADR1, ADR2, and ADR3. These registers are
initialized to 00 after a valid reset. For this reason it is
recommended that no assigned addresses should equal
0. Also, since there are four address registers, a user has
a minimum of two addresses which can be assigned to
each station when using 16-bit addressing or four ad-
dresses when using 8-bit addressing. Those registers not
used do not need to be initialized. When using 16-bit
addresses ADR1:ADR0 form one 16-bit address and
ADR3:ADR2 form a second address. The C152 will
always recognize an address consisting of all 1s, which
is considered a ‘‘broadcast’’ address. An address con-
sisting of all 1s should not be assigned to any individual
station.

There are many methods used to assign addresses.
Some suggestions are: reading of a switch, addresses
contained in actual program code, assignment by an-
other node, or negotiated with the system. As men-
tioned earlier, if HBA is being used then the LSB of the
address must be 0 when acknowledgements are expect-

16

AP-429

ed. Since more than one address can be assigned per
station it is possible to use or not use HBA within the
same station. This would work by assigning one address
that would be even for when acknowledgements are re-
quired and another assigned address would be odd for
those occasions when acknowledgements are not need-
ed.

To assign an 8-bit address:
ADR0 e nnnnnnnn

and optionally:
ADR1 e xxxxxxxx
ADR2 e yyyyyyyy
ADR3 e zzzzzzzz

To assign a 16-bit address:
ADR0 e nnnnnnnn (lower byte)
ADR1 e xxxxxxxx (upper byte)

and optionally:
ADR2 e yyyyyyyy (lower byte)
ADR3 e zzzzzzzz (upper byte)

where xxxxxxxx, yyyyyyyy, zzzzzzzz are addresses to
be assigned.

In this example there are 5 nodes (A, B, C, D, and E)
with up to 4 common peripherals. The peripherals
are: terminals, keyboards, printers, and modems. As-
suming 8-bit addressing, a specific address bit is as-

signed to each peripheral: bit 1 to terminals, bit 2 to
keyboards, bit 3 to printers, and bit 4 to modems.
Figure 8 shows how this addressing is mapped.

ADDRESS

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

N.U. N.U. N.U. MODEM KEYBOARD GROUP

PRINTER TERMINAL ADDR

N.U. e NOT USED

Figure 8. Group Addressing Map

Bit 0 is used to differentiate between group addresses
and individual addresses. If bit 0 e 1, then the ad-
dress is a group address, if bit 0 e 0, then the address
is an individual address. This also complies with the
HBA requirements if HBA is enabled. Table 4 defines
which stations have which peripherals.

Table 4. Peripheral Assignment for Example 3

Station A: Terminal, Keyboard

Station B: Printer, Modem

Station C: Terminal

Station D: Printer

Station E: Terminal, Keyboard, Printer, Modem

The next step is to assign each station’s address and
address mask. These are determined by the attached
peripherals. A 1 is placed in the address register bit
and address mask register bit if that station has an
appropriate device. A 1 in the address register is not
used since it is masked out, but will make it easier for
a person not familiar with this specific software to
follow the program.

Address Address Mask

BIT 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

A: 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0

B: 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0

C: 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0

D: 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0

E: 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0

EXAMPLE 3

17

AP-429

Address MaskingÐThe C152 has two 8-bit address
mask registers named AMSK0 and AMSK1. Bits in
AMSK0 correspond to bits in ADR0 and bits in
AMSK1 correspond to bits in ADR1. Placing a 1 into
any bit position in AMSKn causes the corresponding
bit in ADRn to be disregarded when searching for an
address match.

To implement address masking:
AMSK0 e nnnnnnnn

and optionally:
AMSK1 e nnnnnnnn

where n e 1 for a ‘‘don’t care address bit’’
or n e 0 for a ‘‘do care address bit’’

There are two main uses for the address masking capa-
bilities of the C152. The first and simplest use is to
mask off all address bits. In this mode the C152 will
receive all messages. This type of reception is called
‘‘promiscuous’’ mode. The promiscuous mode could be
used where all traffic would be monitored by a supervi-
sory node to determine traffic patterns or to classify
what information is being transferred between which
nodes.

A second use of masking registers is to group various
nodes together. Typically, stations are grouped together
which have something in common, such as functions or
location. Another term used when discussing group ad-
dresses is ‘‘multi-cast’’ addressing. Example Ý3 demon-
strates how multi-cast addressing might be used.

Finally, to communicate with any station that has a
printer, the address 00001001 would be sent and sta-
tions B, D, and E would receive the data. There are
some limitations to using this type of scheme. Some of
the more obvious are: the number of groupings is limit-
ed to the number of address bits minus 1, and it is not
possible to address those stations that have a combina-
tion of attached peripherals, e.g., those stations with
keyboards AND terminals. These problems can be
solved using more elaborate addressing schemes.

HBAÐHardware Based Acknowledge (HBA) is a
hardware implemented acknowledgment mechanism.
The acknowledgement consists of a standalone pream-
ble. An example of a preamble is shown in Figure 5. An
acknowledgment will be returned by the receiver if:

no hardware detectable errors are found in the
frame

the address is an individual address (LSB e 0)

the transmitter is enabled (TEN e 1)

HBA is set

An originating transmitter will expect and accept the
acknowledgment if:

HBA is set

the receiver is enabled (GREN e 1)

the address sent out was an individual address
(LSB e 0)

If a partial or corrupted preamble is received or the
preamble is not completed within the interframe space,
the NOACK bit is set by the station that originally
initiated transmission. HBA is a user selectable option
which must be enabled after a reset.

The HBA method informs the original transmitter that
a packet was received with no detected errors which
saves the overhead and time that would normally be
required to send a software generated acknowledgment
for a valid reception. Some functions that other ac-
knowledgment schemes implement yet are not encom-
passed when using HBA with a C152 is to identify
packets which are out of sequence or frames which are
of a wrong type.

To enable HBA:
RSTAT e XXXXXXX1

INITIALIZATIONÐPROTOCOL INDEPENDENT

Discussion so far has centered on those elements of ini-
tialization which will vary according to the protocol
being implemented. As such, the protocol in many cas-
es will dictate what values to use for initialization. In
addition, there are some parameters set during initiali-
zation that will remain the same regardless of which
protocol is being implemented. There are also some pa-
rameters which may vary for reasons other than which
protocol is being used. These parameters are grouped
together to form the protocol independent initialization
functions. The following sections cover these elements
of initialization. The discussion of initialization param-
eters is complete when the text covering ‘‘Starting,
Maintaining, and Ending Transmissions’’ begins.

CLEARING COLLISION COUNTERÐA transmis-
sion collision detect counter (TCDCNT) keeps track of
the number of collisions that have occurred. It does this
by shifting a 1 into the LSB for each collision that oc-
curs during transmission of the preamble. When
TCDCNT overflows, the C152 stops transmitting and
sets TCDT. Setting TCDT signals that too many colli-
sions have occurred and can cause an interrupt. TCDT
also is set if a collision occurs after the GSC has ac-
cessed TFIFO. During normal transmission, TCDCNT
can be read by user software to determine the number
of collisions, if any, that have occurred. Before starting
the second and subsequent transmissions, it is possible
that TCDCNT already has bits shifted in from a previ-
ous transmission. This would cause TCDCNT to over-

18

AP-429

flow prematurely. In order to preserve the full band-
width of 8 retransmissions, TCDCNT must be cleared
prior to beginning any new transmission.

To clear the collision counter:
TCDCNT e 0

CONTROL OF THE GSCÐ‘‘Control of the GSC’’
specifies how bytes are loaded into the transmitter
(TFIFO) and unloaded from the receiver (RFIFO). A
user has the choice of moving data to or from the GSC
under control of either user software or the DMA
channels.

CPU ControlÐCPU control is the simplest method of
servicing the GSC and allows the most control. The
major drawback to CPU control is that a significant
amount of time is spent moving data from the source to
the destination, incrementing pointers and counters,
checking flags, and determining when the end of data
occurs. In addition, how the GSC interrupts function
differs from when the GSC is under CPU control than
when the GSC is under DMA control. Under CPU
control, valid GSC interrupts occur when either RFNE
(Receive Fifo Not Empty) or TFNF (Transmit Fifo
Not Full) are set. The transmit error and most of the
receive error interrupts still function the same regard-
less of which type of control is used on the GSC. The
only difference in how receive error interrupts operate
is that the UR (UnderRun) bit for the receiver is opera-
tional when the GSC is under DMA control. UR is
disabled when under CPU control.

DMA ControlÐDMA control relieves the CPU of
much of the overhead associated with serving the GSC
and allows faster baud rates. However, the reader must
realize that more details about a ‘‘yet to be transmitted
packet’’ must be known to properly initialize the DMA
channels prior to starting a transmission. In some situa-
tions, especially at high baud rates, the user must take
into account DMA cycles that occur asynchronously
and without any user control or knowledge. This could
possibly disrupt other time critical tasks the C152 is
performing. There may be no indication to a user that
other ongoing tasks are being interrupted by DMA cy-
cles taking over the bus and momentarily stopping
CPU action.

When the DMA is used to service the GSC, the DMA
channels will also need to be initialized and the GSC
interrupts configured to operate in DMA mode. The
main advantages of using DMA control is time saved
and interrupts occur only when there is an error or
when the GSC operation (receive or transmit) is done.
This removes the necessity of continuously polling
RDN and TDN bits to determine when a GSC opera-
tion is complete.

One of the most important facts to remember when
deciding how to service the GSC is that unless the GSC
baud rate is relatively low compared to the CPU oscil-
lator frequency, the only method that can keep up with
the receiver or transmitter is DMA control As a rule of
thumb, if a user is willing to use 100% of available
bandwidth of the C152 and no other interrupts are en-
abled besides the GSC, the maximum baud rate works
out to be approximately 4.5% of the oscillator frequen-
cy. This is based on a 9 instruction cycle interrupt la-
tency, moving a byte of data, return from interrupt and
executing one more instruction before the next GSC
byte is transmitted or received. At an oscillator fre-
quency of 16 MHz, this works out to 720K bits per
second. There are many steps a user could take to in-
crease the baud rate when the GSC is under CPU con-
trol as this scenario is only a simple situation using
worst case assumptions. Taking into account the
amount of time available for the CPU to service the
GSC as more tasks are required by the service routines
or the CPU would further lower the maximum baud
rate. For instance, if a user intended that GSC support
only took 10% of available CPU time, this would re-
duce the effective baud rate by a factor of ten, making
the maximum bit rate 72K. This 10% figure is an aver-
age over the period it takes to complete a frame. Situa-
tions might arise such that spurious GSC demand cy-
cles would require much more than 10% of available
time for short intervals.

INITIALIZING DMAÐSince CSMA/CD is selected,
it is by definition half-duplex. In half-duplex mode,
only one DMA channel is needed to service both trans-
mitter and receiver. However, it is simpler and easier to
explain if both DMA channels are used. The following
text is written under an assumption that both DMA
channels will be used to service the GSC. Regardless of
whether the DMA channel is servicing the receiver or
transmitter, the DMA DONE interrupt generally
should not be enabled. Also, the DMA bit in TSTAT
must always be set. The GSC valid transmit and valid
receive interrupts occur when RDN or TDN is set.
This also eliminates a need to poll RDN or TDN to
determine when a reception or transmission has ended,
as is necessary when the GSC is under CPU control.

The DMA channel servicing the transmitter must have:
Destination Address e TFIFO (085H)
Increment Destination Address (IDA) e 0
Destination Address Space (DAS) e 1
Demand Mode (DM) e 1
Transfer Mode (TM) e 0

The source of data can be SFR space, internal RAM or
external RAM. The byte count must be equal to the
number of bytes to be transmitted, as this determines
when a packet ends. TEN should be set before the
DMA GO bit. It takes one bit time after TEN is set
before the transmitter is enabled. The transmit valid

19

AP-429

interrupt should be enabled after TEN is set. Since
CSMA/CD is half duplex, it doesn’t matter which
DMA channel services the receiver or transmitter, as
only one DMA channel will be active at any time.

The DMA channel servicing the receiver must have:
Source Address e RFIFO (0F4H)
ISA e 0
SAS e 1
DM e 1
TM e 0

The destination for data can be SFR space, internal
RAM or external RAM. The byte count must be equal
to or greater than the number of bytes to be received.
Setting the byte count to 0FFFFH (64K) is one way of
covering all packet lengths. GREN should be set after
the DMA GO bit. The receive valid interrupt should be
enabled after GREN is set. It takes one bit time after
GREN is set before the receiver is enabled and for the
error bits and RDN to be cleared. Before GREN is set,
the user software should ensure that the RFIFO is
cleared. Setting GREN does not clear the receive FIFO
as stated in the hardware description.

INITIALIZING COUNTERS AND POINTERS:
Whether using DMA or CPU control, pointers will be
required to load the correct bytes for the transmitter
and to store received bytes in their proper location.
Counters are required when the GSC is under DMA
control in order to keep the DMA channel active dur-
ing the reception of an entire frame and to identify
when a transmitted frame is to be ended. Counters are
optional if the CPU is used to service the GSC, al-
though its usefulness might be questioned.

When the GSC is under DMA control, the data point-
ers used are destination address registers (DARLn and
DARHn) for the DMA channel responsible for the re-
ceiver and source address registers (SARLn and
SARHn) for the DMA channel servicing the transmit-
ter. The counters used are byte count registers (BCRLn
and BCRHn) for the appropriate DMA channel.

The byte count for the transmitting DMA channel
must be known and loaded prior to beginning actual
transmission. Transmission begins when TEN and GO
are set. The reason the byte count must be known prior
to transmission is that when the counter reaches 0, the
DMA stops loading data into TFIFO, and once TFIFO
is emptied the GSC assumes a transmitted packet is
complete. For the receiver the byte count can be set to
the frame length if known prior to starting reception or
the byte count can be set to a maximum frame packet
length that will ever be received. Another alternative is
to set the byte count equal to 0FFFFH. This option
may be chosen if the length of received packets are
totally unknown. If 0FFFFH is used, the user must
make sure that there is some method to accommodate
this many bytes. If maximum buffer size is a limiting
factor, then that would be used.

When the GSC is under CPU control, internal RAM is
typically used for pointers and counters. These pointers
and counters would be updated by software for each
byte that is received or transmitted. An interrupt is
generated as long as there is at least one byte in the
receive FIFO. An interrupt is also generated as long as
there is room for one byte in the transmit FIFO. It is in
the interrupt service routine that counters and pointers
are updated and data is transferred to or from the GSC
FIFOs. One advantage of CPU control is that the
length of received or transmitted packets need not be
known prior to the start of GSC activities. When the
GSC is under CPU control, user software determines
when a transmission has ended. For moving targets,
CPU control allows the user software to determine
where to store received data at the time it is transferred
to RFIFO.

So far only initialization of the GSC and DMA has
been explained. In order to use the GSC, the receiver,
transmitter, and associated interrupts need to be en-
abled. These are covered in the following section.

ENABLING RECEIVER AND RECEIVER INTER-
RUPTSÐThere are two receiver interrupt enable bits,
EGSRV (Receive Valid) and EGSRE (Receive Error)
and one bit to enable the receiver (GREN). The inter-
rupts should always be enabled whenever the receiver is
enabled. Once this is done, a user can wait for inter-
rupts to occur and then service the GSC receiver. The
conditions which will cause the CPU to vector to GSC
receiver interrupt service routines are described in the
8-Bit Embedded Controller Handbook.

In most CSMA/CD applications, GSC receivers will be
enabled all the time once the C152 has been initialized.
The only time the receiver will not be enabled is when a
reception is completed or a receive error occurs. When
this happens, the GSC receiver hardware clears GREN,
which disables the receiver. The receiver must then be
re-enabled by software before it is ready to accept a new
frame. One way to do this when under DMA control is
to set the receiver enable bit (GREN) in the receiver
interrupt service routine. Similarly, the GSC receive in-
terrupts should always be enabled and remain so except
for the period of time that it takes to service an inter-
rupt.

Once set, the GSC receiver interrupt enable bits always
remain set unless cleared by user software. About the
only valid reason for clearing the receiver interrupt en-
able bits is so that certain sections of code will not be
disrupted by GSC activities. If the interrupts are dis-
abled while the receiver is enabled, the amount of time
the interrupts are disabled should not exceed 24 bit
times. If the interrupts are disabled for a longer period
of time, the receive FIFO may be over written.

20

AP-429

It is a good practice to enable the GSC receiver inter-
rupts prior to enabling the receiver when under CPU
control. Another alternative is to clear the EA bit while
enabling the GSC receiver and receiver interrupts.
However, this could increase interrupt latency. If some-
thing like this is not done, a higher priority interrupt
may alter the program flow immediately after the re-
ceiver is enabled and prior to enabling the interrupts.
This in turn could cause the receiver to overflow. When
the receiver is under DMA control the situation is dif-
ferent. First, the interrupts cannot be enabled before
the receiver because if RDN is set from a previous re-
ception, the receive valid service routine will be invoked
but no reception has yet taken place. The correct se-
quence when under DMA control would be to set the
DMA GO bit, enable the receiver, then enable the re-
ceiver interrupts. In this case the worst that could hap-
pen is a slow response to RDN getting set. Even this
can be worked around by making receive valid the only
high priority interrupt.

To enable the receiver interrupt enable bits and the re-
ceiver this sequence should be followed:

IEN1 e XXXXXX11
RSTAT e XXXXXX1X

or if under DMA control:
DCONn e XXXXXXX1
RSTAT e XXXXXX1X
IEN1 e XXXXXX11

ENABLING TRANSMITTER AND TRANSMIT
INTERRUPTSÐThere are two transmit interrupt en-
able bitsÐEGSTV (Transmit Valid) and EGSTE
(Transmit Error) and one transmitter enable bitÐTEN
(Transmitter ENable). The interrupts should always be
enabled whenever the transmitter is enabled. Once this
is done, a user can wait for interrupts to occur and then
service the GSC transmitter. Conditions which will
cause the CPU to vector to GSC transmit interrupt
service routines are described in the 8-Bit Embedded
Controller Handbook.

Compared with the receiver, opposite conditions exist
concerning when the transmitter is operational and the
sequence of enabling transmitter versus transmit inter-
rupts. First, the transmitter and its interrupts are dis-
abled all of the time except on those occasions when a

transmission is desired. The user’s application deter-
mines when a transmission is needed. Status of the mes-
sage, how full a buffer is, or how long since the last
message was sent are typical criteria used to judge when
a transmission will be started.

When a transmission is complete, the interrupts and the
transmitter should be disabled. This is particularly true
for the transmit valid interrupt as TFIFO will most
likely be empty and TFNF (Transmit FIFO Not Full)
will be set. TFNF e 1 is the source of transmit valid
interrupts when the GSC is serviced under CPU con-
trol.

The transmitter should be enabled before enabling the
transmitter interrupts. If the GSC is under CPU con-
trol and the interrupts are enabled first, TFIFO may be
loaded with data in response to TFNF being set. When
TEN is set, data already loaded into TFIFO would be
cleared. Consequently, data meant to be transmitted
would be lost. If the GSC is under DMA control, it is
possible that an interrupt would be generated in re-
sponse to TDN being set from the previous transmis-
sion, yet no transmission has even started since the in-
terrupts were enabled. If using the DMA channels to
service the transmitter, TEN must be set before the GO
bit for the DMA channel is set. If not, the DMA chan-
nels could load TFIFO with data, and when TEN is set
that data would be lost.

The correct sequence to enable the transmitter and its
interrupt enable bits is:

SETB TEN
SETB EGSTE
SETB EGSTV

or if under DMA control:

SETB TEN
SETB EGSTE
SETB EGSTV
ORL DCONn,Ý01

Once all initialization tasks shown so far are completed,
reception and transmission may commence. The pro-
cess of starting, maintaining, and ending transmissions
or receptions is covered next.

21

AP-429

STARTING, MAINTAINING, AND
ENDING TRANSMISSIONS

Prior to starting a transmission, the user will need to set
TEN. This enables the transmitter, resets TDN, clears
all transmit error bits and sets up TFIFO as if it were
empty (all bytes in TFIFO are lost) after a GSC bit
clock occurs. Once TEN is set, actual transmission be-
gins when a byte is loaded into TFIFO. Figure 9 is a
block diagram of the GSC transmitter and shows how
it functions. Once a byte has entered TFIFO, transmis-
sion begins. The first step is for the GSC to determine if
the link is idle and interframe space has expired. Actu-
ally, this occurs continuously, even when not transmit-
ting, but transmit circuitry checks to make sure these
conditions exist before transmitting. If these two condi-

tions are not met, the C152 will wait until they are.
Once interframe space has expired, DEN is forced low
for one bit time prior to the GSC emitting a preamble
and BOF. About the time the BOF is output, a byte
from TFIFO is transferred to the shift register. As bits
are shifted out this register, they pass by the CRC gen-
erator, which updates the current CRC value. Bits then
enter the data encoder which forms them into Man-
chester coded waveforms and out TxD. If TFIFO is
empty when the shift register goes to grab another byte,
the GSC assumes it is the end of data. To complete a
frame, bits in the CRC generator are passed through
the data encoder and the EOF is appended. One part of
the block diagram in Figure 9 is the transmit control
sequencer. The transmit control sequencer’s purpose is
to determine which state the transmitter is in such as
Idle, Preamble, Data, or CRC. To perform this func-
tion it has connections to all circuits in the transmitter.
These connections are not shown in order to make the
diagram easier to read.

If the transmitter is under CPU control the first byte is
loaded with user software. TFIFO should be filled and
counters and pointers updated before proceeding with
any other tasks required by the CPU. There is room for
up to three bytes in TFIFO. Before loading the first
byte, users should examine TDN to ensure that any
previous transmissions have completed. If TEN is set
before the end of a transmission, that transmission is
aborted without appending a CRC and EOF but the
interframe space will still be enforced before starting
again. A user can identify when TFIFO is full by exam-
ining TFNF (Transmit Fifo Not Full). TFNF will al-
ways remain at a logic 1 as long as there is room for at
least one more byte in TFIFO. There is a one machine
cycle latency from when a byte is loaded into TFIFO
until TFNF is updated. Because of this latency, the
status of TFNF should not be checked immediately fol-
lowing the instruction that loaded TFIFO but should
be examined two or more instructions later. Whenever
TFNF is set, an interrupt will be generated if EGSTV is
set. In response to the interrupt, bytes should be loaded
into TFIFO until TFNF is cleared and update any
pointers or counters.

Once the user is through with transmitting bytes for the
current frame, the GSC transmit valid interrupt
(EGSTV) should be disabled. This is to prevent the
program flow from being interrupted by unnecessary
GSC demands as TFNF will remain set all the time.
The GSC transmit error interrupt (EGSTE) must re-
main enabled as transmit errors can still occur. While
under CPU control there is no interrupt associated with
transmit done (TDN) so a user must periodically poll
this bit to determine when actual transmission is com-
plete. After the last byte in TFIFO is transmitted there
is a delay until TDN is set. This delay will be equal to
the CRC length plus approximately 1.5 bit times for the
EOF. The CRC is appended after the end of data by
GSC hardware.

270720–14

Figure 9. Transmitter Block Diagram

22

AP-429

To start a transmission when the GSC is under DMA
control, users should first enable the transmitter by set-
ting TEN, then set the GO bit for the appropriate
DMA channel. Before the GO bit is set users must
initialize the GSC and DMA. Thereafter, the DMA
loads the first byte that begins actual transmission and
keeps the transmit FIFO full until the end of transmis-
sion. In this case, transmission ends when the byte
count reaches 0, which means the length of the message
to be transmitted must be known before transmission
begins.

The DMA channel examines TFNF to determine when
the transmitter needs servicing. When a byte is trans-
ferred into TFIFO, the DMA channel takes control of
the internal bus and the CPU is held off for one ma-
chine cycle. This is the only overhead associated with
the actual transmission when under DMA control. This
is significantly less than the overhead associated with
each byte that must be loaded by software when the
GSC is under CPU control. When the DMA is servic-
ing the transmitter, at least one machine cycle occurs
between each DMA load. This prevents the DMA from
hogging the internal bus when servicing the transmit-
ter. It takes five machine cycles to load three bytes to
initially fill TFIFO. When transmission ends, TDN will
be set and when the GSC is under DMA control it is
the setting of TDN that begins the GSC interrupt serv-
ice routine.

The discussion so far assumes there are no errors dur-
ing transmission of a frame. However, in CSMA/CD
there is always a possibility of an error occurring and
part of maintaining transmission is servicing those er-
rors. In the C152 when an error is detected an error bit
is set. At the same time the error bit is set, TEN is
cleared which disables the transmitter. Types of errors

that can occur are: collision detection errors (TCDT),
no acknowledgement errors (NOACK) (if HBA is en-
abled), and underrun errors (UR) (if the DMA chan-
nels are used to service the transmitter). After setting
the error bit, the C152 jumps to the transmit error vec-
tor if EGSTE (Transmit Error enable) is set. Depend-
ing on the protocol implemented, a user may wish to
take some specific response to an error but in almost all
cases the transmitter will be re-enabled and the same
data retransmitted. This requires that counters and
pointers be initialized, the transmitter enabled, and
TFIFO filled. Another frequent action taken is to log
the type of error for later analysis or to keep track of
specific trends. Once transmission is restarted, the same
flow is followed as before, as if no error occurred.

STARTING, MAINTAINING, AND
ENDING RECEPTIONS

In most applications, the receiver is always enabled and
reception begins when the first byte is loaded into
RFIFO. Figure 10 shows a block diagram of the receiv-
er.

As indicated in Figure 10, before the first byte is loaded
into RFIFO, the address is checked for a matching ad-
dress assigned by ADRn. A user can disable address
recognition by writing all 1s to the address mask regis-
ter(s), AMSKn. In this mode all frames with a valid
BOF will be received. When the first byte is loaded into
RFIFO, RFNE is set. If the address does match, there
is a delay of about 24 or 40 bit times from reception of
the first bit until a byte is loaded into RFIFO depend-
ing on which CRC is chosen. This is due to CRC strip
circuitry and the bits required to fill up the shift regis-
ter.

270720–15

Figure 10. Receiver Block Diagram

23

AP-429

When the GSC is being serviced by the CPU, an inter-
rupt is generated when RFNE is set and if EGSRV is
enabled. The user typically responds to an interrupt by
removing one byte from RFIFO and storing it some-
where else. The user should check RFNE before leav-
ing the interrupt service routine to see if more than one
byte was loaded in to RFIFO. While under CPU con-
trol, there is no interrupt generated when reception is
complete although receive done (RDN) is set. When
RDN is set, the receiver is disabled and user software
has to re-enable it. To determine when a frame has
ended, the user must periodically poll RDN. After a
frame has ended, the user will normally reinitialize
pointers, reset counters, and enable the receiver. RDN
will not be set when the last byte is transferred to
RFIFO because the EOF will not be recognized yet. It
takes approximately 1.7 bit times of link inactivity for
the EOF to be recognized.

When the GSC is controlled by the DMA channels an
interrupt is generated when RDN is set for a valid re-
ception. At this point all a user needs to do is to set the
source address registers, set the byte count, set the GO
bit, and enable the receiver. Whenever the GSC receiv-
er is being serviced by the DMA channels, the GO bit
should be set before the receiver enable bit, GREN.
This is to ensure that the DMA channel is active when-
ever the receiver is enabled. If the receiver is enabled
before the DMA channel, it is possible that an interrupt
would alter the program flow. An interrupt could delay
setting the GO bit so that data is received while the
DMA channel is prevented from servicing the GSC.
Consequently, an overrun error occurs.

For the GSC receiver, as in the transmitter, an error is
always possible. Conditions that set the error bits are
the same regardless of how the receiver is being serv-
iced. Possible errors are: receiver collision (RCABT),
CRC error (CRCE), overrun (OVR), and alignment er-
ror (AE).

The only type of error that user software can take ac-
tions to prevent is an overrun error. In this case, when
an overrun error occurs it is because the receiver could
not be serviced fast enough. Under DMA control, the
only way this could happen is if the other DMA chan-
nel prevented servicing the GSC by the DMA or the
user cleared the GO bit. Solutions to these problems are
to turn off the second DMA channel when receiving
and not mess around with the GO bit during reception.
To determine if the GSC is receiving a packet, the byte
count of the appropriate DMA channel can be exam-
ined. If the GSC is under CPU control and an overrun
occurs it is because there are too many other tasks the
CPU is doing or the baud rate is just too high for the
CPU to keep up. A solution to this problem is to either
cut back on the number of tasks the CPU must perform

while a packet is being received or to switch to DMA
control of the GSC.

In all other cases, about all the C152 can do when a
receive error occurs is to log the type of error, discard
the data already received, and to re-enable the receiver
for the next packet. These actions would also be taken
for an overrun error.

SUMMARY

Hopefully, this application note has given the reader
some insight on how to set up the GSC parameters,
how to transmit or receive a packet, and how to re-
spond to error conditions that may arise. The process of
obtaining data for transmission or what to do with data
received has been left open as much as possible as these
vary widely from application to application. In some
cases, all the data will be managed by another, more
powerful processor. In this situation, the user will have
to implement another interface between the main proc-
essor and the C152.

Although the whole process of using the C152 may at
first, seem confusing and complicated, breaking down
this process into steps may make utilizing the C152
much simpler. One suggestion of the steps to follow is:

1) INITIALIZATION
A) Baud rate
B) Preamble
C) Backoff
D) CRC
E) Interframe space
F) Jamming signal
G) Slot time
H) Addressing
I) Acknowledgment
J) Clearing the collision counter
K) Controlling the GSC
L) DMA initialization (if used)
M) Counter and pointer setup
N) Enabling the GSC
O) Enabling the interrupts

2) TRANSMITTING/RECEIVING PACKETS
A) Starting transmission/reception
B) Maintaining GSC operations
C) Ending transmission/reception
D) Responding to errors

These steps can be used as a checklist to ensure that the
minimum set of functions have been implemented that
will allow the GSC to be used in almost any applica-
tion. The list also demonstrates that the bulk of the
tasks the user must implement is in initializing the
GSC. Once initialization is accomplished, there is com-
paratively little work left to implement an application.

24

AP-429

APPENDIX A
SOFTWARE EXAMPLE

The following example demonstrates how the DMA
can be used to service the GSC in a specific environ-
ment. Figure 11 shows a diagram of the hardware used.
As shown, the UART is used as a source and destina-
tion for data transferred by the GSC. Also shown in
Figure 11 are some DIP switches. These DIP switches
determine source and destination addresses. The
switches are read only once after a reset. The hardware
environment is shown for informational purposes only
and is not necessarily a real application that would be
implemented by a user. Even so, with some minor
changes, similar circuits might be used, requiring corre-
sponding changes to be made in the software.

This program has been written with the assumption
that a terminal will be connected to the UART. As
such, only ASCII data can be transferred and each
block of data is delineated by a carriage return (0DH)
and line feed (0AH). As data is received by the UART
it is stored in one of four rotating buffers. This data will
later be transmitted by the GSC to other C152s. Data
received by the GSC is stored in one of four different
rotating buffers. This data will be transmitted by the

UART to a terminal. 1K of external data RAM is con-
nected to the C152 to serve as storage buffers. Conse-
quently, each buffer is one-eighth of available external
RAM, or 128 bytes. This provides up to one line of 120
characters for each buffer. Also, each buffer will store
additional information such as destination address,
source address, and message length. When a line of
characters is complete, a flag will be set to signify to the
GSC that that buffer is to be transmitted. Conversely,
when a packet received by the GSC is complete, a flag
is set to identify that buffer is to be output through the
UART to a terminal. Whenever access to one buffer is
complete, the software manipulates pointers so the next
buffer is used. If all 4 buffers are full, data for that type
of buffer is no longer accepted until another buffer is
available.

Note that this program uses both DMA channels, one
for the receiver and one for the transmitter on the GSC.
A program could have been written using only one
DMA channel. Using both channels has made the pro-
gram much simpler and shortened the time it takes to
change from transmitting to receiving.

A-1

AP-429

270720–16

Figure 11. Hardware Environment for Software Example

A-2

AP-429

2
7
0
7
2
0
–
1
7

A-3

AP-429

2
7
0
7
2
0
–
1
8

A-4

AP-429

2
7
0
7
2
0
–
1
9

A-5

AP-429

2
7
0
7
2
0
–
2
0

A-6

AP-429

2
7
0
7
2
0
–
2
1

A-7

AP-429

2
7
0
7
2
0
–
2
2

A-8

AP-429

2
7
0
7
2
0
–
2
3

A-9

AP-429

2
7
0
7
2
0
–
2
4

A-10

AP-429

2
7
0
7
2
0
–
2
5

A-11

AP-429

2
7
0
7
2
0
–
2
6

A-12

AP-429

2
7
0
7
2
0
–
2
7

A-13

AP-429

2
7
0
7
2
0
–
2
8

A-14

AP-429

2
7
0
7
2
0
–
2
9

A-15

AP-429

2
7
0
7
2
0
–
3
0

A-16

AP-429

2
7
0
7
2
0
–
3
1

A-17

AP-429

2
7
0
7
2
0
–
3
2

A-18

AP-429

2
7
0
7
2
0
–
3
3

A-19

AP-429

2
7
0
7
2
0
–
3
4

A-20

AP-429

2
7
0
7
2
0
–
3
5

A-21

AP-429

2
7
0
7
2
0
–
3
6

A-22

AP-429

2
7
0
7
2
0
–
3
7

A-23

AP-429

2
7
0
7
2
0
–
3
8

A-24

AP-429

2
7
0
7
2
0
–
3
9

A-25

AP-429

2
7
0
7
2
0
–
4
0

A-26

AP-429

2
7
0
7
2
0
–
4
1

A-27

AP-429

2
7
0
7
2
0
–
4
2

A-28

AP-429

2
7
0
7
2
0
–
4
3

A-29

AP-429

2
7
0
7
2
0
–
4
4

A-30

AP-429

2
7
0
7
2
0
–
4
5

A-31

AP-429

2
7
0
7
2
0
–
4
6

A-32

AP-429

2
7
0
7
2
0
–
4
7

A-33

AP-429

2
7
0
7
2
0
–
4
8

A-34

AP-429

2
7
0
7
2
0
–
4
9

A-35

AP-429

2
7
0
7
2
0
–
5
0

A-36

AP-429

2
7
0
7
2
0
–
5
1

A-37

AP-429

2
7
0
7
2
0
–
5
2

A-38

AP-429

2
7
0
7
2
0
–
5
3

A-39

AP-429

2
7
0
7
2
0
–
5
4

A-40

AP-429

2
7
0
7
2
0
–
5
5

A-41

AP-429

APPENDIX B
TAKING CONTROL OF THE BACKOFF ALGORITHM

There is a method that allows the user to take control
of the backoff process. This method will only work
when normal or alternate backoff modes are selected. It
will not work in DCR mode. This method works by
loading TCDCNT with 80H. Then on the first colli-
sion, TCDCNT will overflow, aborting the transmis-
sion and causing a transmission error to occur. It is in
the error routine where the user takes control. Some of
the modifications that have been tested are:

1) Extending the number of retransmissionsÐthis was
accomplished by counting the number of attempted
transmissions in a user implemented counter. When
the number of collisions grew too big, the transmis-
sions were aborted and an error flag set.

2) Extending the number of time slots availableÐto
implement this, it was required that the time slots be
simulated using one of the timers. Then by reading
the PRBS multiple times and ANDing each read of
the PRBS with a masking register, the number of
time slots could be extended to randomly fall within
any range selected by the user. Once the slot time
was determined, the resulting value was multiplied
by the selected time slot with the appropriate value
loaded into the timer registers and the timer started.
When the timer expired, the transmission was re-at-
tempted. For very large delays, multiple timer over-
flows were required and a loop counter used. This
also allowed time slots larger than 255 bit times to
be used.

Other modifications the user may wish to implement
would be to use some kind of token passing scheme
when collisions occur or instead of randomly assigning
slot times, assign pre-determined time slots to each sta-
tion.

If the user decides to implement some kind of scheme
such as these there are several factors the user must be
aware of. These are:

1) When TCDCNT overflows, it will still contain ei-
ther 0 or 1 and these many time slots must expire
before the GSC will begin transmissions again. Even
if the transmitter is disabled and re-enabled the
GSC still goes through the standard backoff algo-
rithm. This means the user should program the slot
time to 01 to minimize the amount of time until the
GSC hardware will allow another transmission to
begin.

2) Due to the amount of software required to imple-
ment any of these suggestions, most will not work at
the same speed the internal hardware is capable of.
For this reason, running at maximum baud rates
with minimum IFS will probably not work.

3) There is no real time indication to the user that the
GSC thinks it is in a backoff algorithm, if the GSC
is currently receiving data, or when a collision is
detected. These, and possibly other factors not ap-
parent at the time this application note was written,
must be considered whenever the user tries to modi-
fy the hardware based backoff algorithm with soft-
ware.

B-1

AP-429

APPENDIX C
REFERENCES

1. ISO (1979) Data CommunicationÐHigh-Level Data Link Control ProceduresÐFrame Structure, ISO 3309.

2. ANSI/IEEE (1985) Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and
Physical Layer Specifications, ANSI/IEEE Std 802.3.

C-1

	Introduction
	GSC Initialization
	Initialization (Protocol Dependent)
	Baud Rate
	Preamble Length
	Backoff Mode
	Interframe Space
	Jamming Signal
	Slot Time
	Addressing

	Initialization-Protocol Independent
	Clearing Collision Counter
	Control of the GSC
	Initializing DMA
	Initializing Counters and Pointers
	Enabling Receiver and Receiver Interrupts
	Enabling Transmitter and Transmit Interrupts

	Starting, Maintaining, and Ending Transmissions
	Starting, Maintaining, and Ending Receptions
	Summary
	Appendix A Software Example
	Appendix B Taking Control of the Backoff Algorithm
	Appendix C References
	FIGURES
	Figure 1. Packetized Frame
	Figure 2. UART Byte
	Figure 3. GSC CPU Flow Chart
	Figure 4. GSC DMA Flow Chart
	Figure 5. 8-Bit Preamble (also HBA Waveform)
	Figure 6. D.C. Jam
	Figure 7. CRC Jam
	Figure 8. Group Addressing Map
	Figure 9. Transmitter Block Diagram
	Figure 10. Receiver Block Diagram
	Figure 11. Hardware Environment for Software Example

	TABLES
	Table 1. CSMA/CD Variations Supported by C152
	Table 2. Protocol Dependent Initialization
	Table 3. Protocol Independent Initialization
	Table 4. Peripheral Assignment for Example 3

	EXAMPLES
	Example 1. GSC Receive Valid Service Routine
	Example 2. GSC Receive Error Service Routine
	EXAMPLE 3

